Nonoperating room anesthesia (NORA) cases are projected to exceed 50% of total anesthesia cases in the near future.\(^1\) Although one large-scale study failed to show a difference in mortality between NORA and operating room (OR) settings,\(^2\) multiple analyses of data from the American Society of Anesthesiologists (ASA) Closed Claims database have revealed that adverse events occur nearly twice as often in NORA locations as they do in the OR.\(^2\)\(^4\)

Patient safety in NORA locations may be compromised by problems with ergonomics, location, staffing, teamwork and communication, access to equipment, lack of adequate preoperative optimization, and much more. Other than the ASA Statement on Nonoperating Room Anesthetizing Locations, there have been no widely available recommendations on how to establish, maintain, and standardize safe workflows in NORA.\(^5\)

In 2022, the Anesthesia Patient Safety Foundation (APSF) convened a multidisciplinary group of experts to organize the annual Stoelting Consensus Conference on “Crucial Patient Safety Issues in Office-Based and Non-operating Room Anesthesia.” The objective of the conference was to determine consensus recommendations for best practices in NORA around areas of facility and location, equipment and supplies, staffing and teamwork, patient selection, periprocedural care, and quality improvement. A brief summary of our process and results follows.

METHODS

The conference planning committee (the authors) created a conference program to address the unique challenges of NORA (Table 1). Simultaneously, they created the first draft of NORA recommendations, which was then revised and sent to conference speakers and attendees. The recommendations were revised consistent with the feedback provided and presented to breakout groups during the conference. Additional feedback and revisions were then presented to all conference attendees on the last day for discussion and voting. After the meeting, there were further revisions from the conference planning committee, speakers, and participants, which led to consensus-derived recommendations (Supplemental Digital Content 1, Table 1, http://links.lww.com/AA/E369). Ethical considerations, inclusion and exclusion criteria, a list of speakers, and further details of the consensus development process can be found in Supplemental Digital Content 2, Appendix A, http://links.lww.com/AA/E370.

RESULTS

A summary of the 42 recommendations is presented in Supplemental Digital Content 1, Table 1, http://links.lww.com/AA/E369. These recommendations apply to the provision of anesthesia or sedation in NORA locations, which include, but are not limited to, non-OR procedural areas in the inpatient and outpatient settings, including office-based areas like dentistry. These recommendations related to the following domains: facility (9 statements), equipment, medications, and supplies (16 statements), staff and teamwork (4 statements), preprocedure care and patient selection (6 statements), inpatient care (2 statements), treatment room (3 statements), and continuous quality improvement (2 statements).

DISCUSSION

NORA locations are known to be fraught with patient safety concerns and high stress.\(^6\)\(^7\) The ASA’s Statement on Nonoperating Room Anesthesia provides guidance on safety considerations for NORA related primarily to facility and equipment issues. The APSF recommendations build on these considerations and provide a template for clinicians to improve teamwork, personnel, and preoperative optimization, which are key patient safety issues in NORA.\(^5\)

The recommendations address many areas that are cited as contributory to safety problems in NORA: facility and location, access to equipment and supplies, teamwork issues, perioperative care, and quality improvement. While the need for anesthesia services outside of the OR has expanded exponentially in the past decade,\(^8\)\(^9\) few hospitals are constructed with NORA as a priority.
NORA Consensus Recommendations (cont’d)

From “NORA Consensus,” Preceding Page

Supplemental Table 1: Consensus summary for the safe conduct of anesthetic care in NORA locations.

<table>
<thead>
<tr>
<th>FACILITY</th>
<th>STAFF AND TEAMWORK</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Anesthesiology personnel should participate in capital budget planning for equipment required to set up, maintain, and improve NORA services.</td>
<td>1. Communication, team building, expectations, and training should be established through a proactive collaborative process driven by anesthesiology personnel, nursing, surgical, and proceduralist leadership.</td>
</tr>
<tr>
<td>2. When volatile anesthetics are administered, an anesthesia machine sufficient for case types and maintained to facility standards is required.</td>
<td>2. In each NORA location adequate staff shall be trained to support the patient and the anesthesiology care team. The NORA team shall include at least two individuals with appropriate certification (ACLS, BLS, or PALS) and defined responsibilities to provide patient care during emergencies.</td>
</tr>
<tr>
<td>3. Emergency airway equipment, including multiple forms of rescue (e.g., supraglottic airways, video laryngoscope, cricothyrotomy kit, etc.) is required for each NORA location.</td>
<td>3. Anesthesiology personnel should triage and evaluate complex cases, assist with scheduling, and optimize quality and safety protocols. A dedicated NORA anesthesiology team should be considered to facilitate communication and the adoption of protocols and pathways.</td>
</tr>
<tr>
<td>4. A self-inflating hand resuscitator bag capable of delivering positive pressure ventilation while administering at least 90 percent oxygen is required.</td>
<td>4. Team members names and roles should be posted in the NORA location to facilitate communication during patient care.</td>
</tr>
<tr>
<td>5. In each NORA location, emergency supplies including a defibrillator, medications, and other equipment to provide cardiopulmonary resuscitation are required.</td>
<td>5. Preprocedural care and patient selection</td>
</tr>
<tr>
<td>6. Equipment and medication for treatment of MH shall be present in all locations where volatile anesthetics are used.</td>
<td>1. A preprocedural evaluation process shall be established based on the ASA Practice Advisory for Preanesthesia Evaluation and emerging best practice.</td>
</tr>
<tr>
<td>7. Succinylcholine or other equivalent rapid acting paralytic medications should be immediately available for emergency airway management in all NORA locations. When succinylcholine is present, staff shall be educated on MH and prepared to provide and aid treatment.</td>
<td>2. Adult and pediatric patient comorbidities should be identified which require specialized preoperative evaluation or necessitate procedural care in an inpatient facility.</td>
</tr>
<tr>
<td>8. Infusion pumps should incorporate dose error reduction systems (DERS).</td>
<td>3. Adult and pediatric patients with elevated BMI or a diagnosis or suspected diagnosis of OSA should be evaluated on a case-by-case basis for suitability for the planned procedural location and management plan.</td>
</tr>
<tr>
<td>9. Diagnostic testing capability appropriate for the patient population and planned procedures is required.</td>
<td>4. Before each procedure, a timeout shall be conducted per The Joint Commission Universal Protocol or according to the facility protocol including site marking and laterality as indicated.</td>
</tr>
<tr>
<td>10. Appropriate blood products and the equipment required for administration, such as a fluid warmer, shall be available for procedures that may have clinically significant blood loss.</td>
<td>5. Appropriate education shall be provided to team members for new or unfamiliar procedure types, and specific aspects of the case shall be reviewed with NORA staff.</td>
</tr>
<tr>
<td>11. SCI injuries, including airway equipment, infusion pumps, monitors, and anesthesia machines shall be available for MRI, and providers trained on their use. Patient monitoring consistent with operating room standards should be displayed in the MRI control room.</td>
<td>6. All patients should be assessed for fall and venous thromboembolism risk and treated appropriately.</td>
</tr>
<tr>
<td>12. Intralipid for treatment of local anesthetic systemic toxicity (LAST) shall be available at NORA locations where local anesthetic is used for purposes other than local skin infiltration.</td>
<td>INTRAPROCEDURE CARE</td>
</tr>
<tr>
<td>13. Patient size and weight capacity limits should be established for each NORA location to confirm patient suitability based on equipment and other available resources.</td>
<td>1. Intra-procedural monitoring shall adhere to ASA Standards for Basic Anesthetic Monitoring with additional monitoring based on patient comorbidities and/or the nature of the procedure.</td>
</tr>
<tr>
<td>14. Crisis manuals appropriate for the patient population, procedures, and potential therapeutic complications shall be available to staff and clearly visible in each NORA location to serve as cognitive aids during emergencies.</td>
<td>2. A formal system to call for assistance, designate personnel to respond, and transport a patient with appropriate monitoring from the NORA location to an in-patient facility shall be established.</td>
</tr>
<tr>
<td>15. Protective equipment, including, but not limited to lead aprons, goggles and radiation shields shall be made available to all anesthesia personnel where radiation exposure may occur.</td>
<td>POSTPROCEDURE CARE</td>
</tr>
<tr>
<td>16. Equipment, such as inflatable mattresses, for patient transfer to and from procedure table shall be available to avoid injury to patient and personnel.</td>
<td>1. Appropriate postanesthesia management shall be provided per ASA Standards for Postanesthesia Care.</td>
</tr>
</tbody>
</table>

©2023 Anesthesia Patient Safety Foundation. All rights reserved. Reprinted with permission from Anesthesia Patient Safety Foundation. Copying, use and distribution prohibited without the express written permission of Anesthesia Patient Safety Foundation.
From “NORA Consensus,” Preceding Page

Accordingly, anesthesiology departments have had to retrofit what they need for safe anesthetic care into spaces designed for other purposes. NORA locations may be on different floors than the main OR, or even in different buildings, impeding rapid access to additional personnel and equipment in case of emergency. These consensus recommendations establish clear expectations for the facility, including grouping of procedural areas close to one another and the main OR when possible, establishment of scavenging capabilities and adequate oxygen supply, and need for sufficient electrical outlets and lighting to facilitate safe care.

Many NORA locations do not have sufficient equipment to provide safe anesthetic care, which may contribute to patient safety events.7,10 These recommendations provide standards for facilities to provide emergency airway equipment and capability for rescuing malignant hyperthermia and local anesthetic toxicity, if applicable. The consensus recommendations also provide guidelines for clinician safety; many areas lead clinicians to perform procedures under fluoroscopy. In fact, the anesthesia provider may have radiation exposure equivalent to the proceduralist, and thus, sufficient protection from radiation is required.31

In many procedural suites, the proceduralist and nursing team may not be as familiar with working with anesthesia teams. This lack of familiarity may lead to unfavorable team dynamics and the lack of “belonging,” which can impede patient safety.7,10 Lack of familiarity—both among team members, and with anesthetic procedures and concerns—as well as poor communication, can lead to adverse events in NORA.10,22,115 While the physical space, ergonomics, and location of NORA areas may be more difficult to alter, human factors-related interventions may be easier to implement. Improvements in teamwork and communication are imperative to improving patient safety in these areas and can be facilitated by team training, smaller, more dedicated teams, and shared knowledge about complex cases.

There can be significant production pressure in NORA that can lead to shortcuts. The consensus recommendations advocate for thorough preoperative workup as well as standardized communication before the procedure begins (e.g., formal timeout). Perioperative monitoring should occur according to standards established by the ASA.3,5,6 The recommendations also acknowledge the need for both anesthesia and procedural services to review cases for quality of care, with focus on continuous quality improvement.

There have been other recommendations for how to improve anesthetic care in NORA. Notably, Herman et al1 published a recent narrative review of safety issues in NORA and used an engineering framework to provide recommendations for improvement. The recommendations presented here differ as they originate from a multidisciplinary cohort of clinicians and health care representatives with extensive expertise in NORA; who, through an iterative process, have provided consensus statements on approaches for the safe conduct of anesthesia in NORA locations. Indeed, these consensus recommendations supplement existing literature and should be used in concert with previous work.

While most general principles were agreed on by the vast majority of conference attendees and experts, the scope of the recommendations generated the greatest amount of discussion and passion during the development process. There was extensive discussion regarding whether to narrow the scope of the recommendations to inpatient only, or if there should be separate recommendations for ambulatory and office-based anesthesia. This is likely a reflection of the diversity of NORA practice, including inpatient, ambulatory, and office practices. In particular, the example of patient harm in pediatric dental cases generated significant discussion.15 Indeed, patient morbidity and procedural complexity in inpatient locations differ significantly from complexity in outpatient and office-based locations, and there was extensive discussion about whether facility and personnel requirements for inpatient NORA should be required in outpatient or office-based NORA. Some requirements may not be possible—for example, having separate preanesthetic and postanesthetic care areas. The consensus recommendations are the “bare minimum” for safe patient care in NORA and are intended to apply to all NORA locations. Many common patient safety elements apply across the entire NORA population, and the final recommendations were endorsed by clinicians working in inpatient, ambulatory, and office-based NORA.

These recommendations provide a starting point for dedicated anesthesia teams in NORA to improve patient safety, but do not provide strategies for implementation, as these may be specific to both the individual facility and the hospital system. There were several other limitations in the process used to develop the recommendations. First, the content and focus of the conference itself may not fully capture all essential considerations during NORA practice. Second, the final draft of recommendations is
NORA Consensus (cont’d)

J.W. Beard, MD, is Chief Medical Officer at GE Healthcare-Patient Care Solutions.

Emily Methangkool, MD, MPH, is an associate professor of clinical anesthesiology at the David Geffen School of Medicine, UCLA, Los Angeles, CA.

Shane Angus, CAA, MSA, is assistant professor at Case Western Reserve University School of Medicine, Washington, D.C.

Daniel J. Cole, MD, is president of the APSF and professor of clinical anesthesiology, UCLA, Los Angeles, CA.

Richard D. Urman, MD, MBA, is the Jay J. Jacoby Professor and Chair of Anesthesiology at The Ohio State University, Columbus, OH.

J.W. Beard is an employee and shareholder of GE HealthcareCare. Emily Methangkool receives author royalties from UpToDate and honoraria from Edwards LifeSciences (Speakers Bureau and Trial Steering Committee). Daniel J. Cole is the president of the Anesthesia Patient Safety Foundation, which sponsored the conference. R. D. Urman reports fees/funding from AcelRx, Covidian, Pfizer, and Merck. Shane Angus has no conflicts of interest.

This manuscript was handled by Richard C. Priellip, MD.

REFERENCES
