Artificial Intelligence, Machine Learning,

and the Practice of Anesthesiology

Michael Mathis, M.D.

Assistant Professor of Anesthesiology

Affiliated Faculty, Department of Computational Medicine & Bioinformatics

Research Director, Multicenter Perioperative Outcomes Group

Disclosures

I have no personal financial, consulting, or contractual relationships with any vendor.

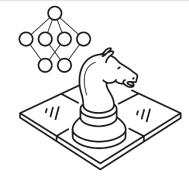
I am PI or Co-I on research grants: National Institute of Health – NHLBI Department of Defense

Overview

- Some background & context
- Near-future *examples of ML/AI* that anesthesiologists might conceivably use
- ML/AI *logistical, social, and ethical* dilemmas & what to do about them

Overview

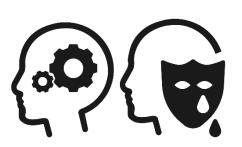
- Some background & context
- Near-future *examples of ML/AI* that anesthesiologists might conceivably use
- ML/AI *logistical, social, and ethical* dilemmas & what to do about them


...*so, what are we talking about?* **Types of Al**

Reactive AI	
 Has no memory Task-specific 	

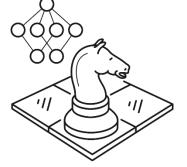
...*so, what are we talking about?* **Types of Al**

Reactive AI	Limited Memory
 Has no memory Task-specific 	 Past experiences inform future decisions Vulnerable to outliers or new situations

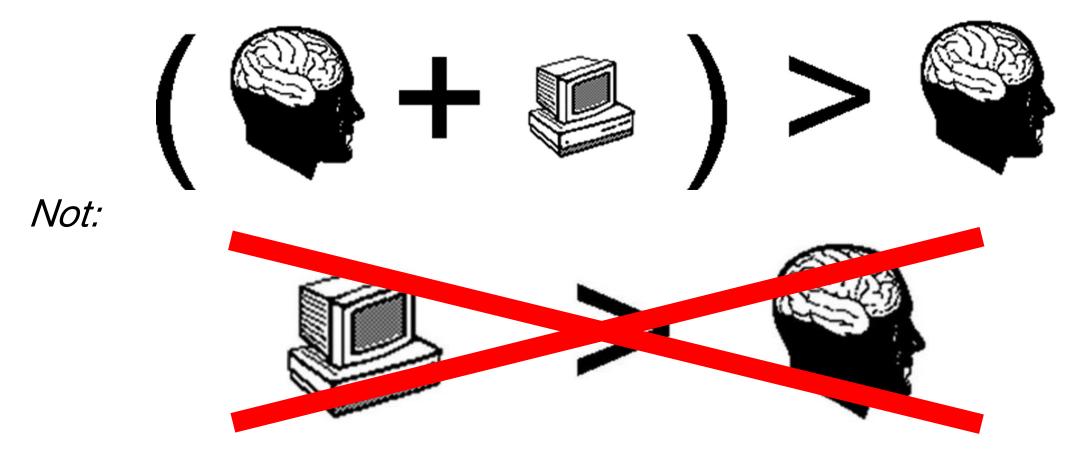


...*so, what are we talking about?* **Types of Al**

 Has no memory Task-specific Past experiences inform future decisions Learns with fewer examples, since outliers or new situations Understands human reasoning Learns with fewer 	Reactive AI	Limited Memory	Theory of Mind	
	-	inform future decisionsVulnerable to	human reasoningLearns with fewer examples, since	



...so, what are we talking about? **Types of Al**


Reactive AI	Limited Memory	Theory of Mind	Self-aware
Has no memoryTask-specific	 Past experiences inform future decisions Vulnerable to outliers or new situations 	 Understands human reasoning Learns with fewer examples, since understands motives / intent 	 Human-level intelligence that can bypass our own intelligence

...and what is the goal?

"Fundamental Theorem" of Biomedical Informatics ¹

1. Friedman, CP. A "Fundamental Theorem" of Biomedical Informatics. Journal of the American Medical Informatics Association. 2009;16(2):169-170.

...and what is the goal?

Machine Learners		Humans
Strength	Rapid, "unbiased", accurate predictions	Understand implications of clinical decisions
Weakness	Lack transparency Lack clinical judgment	High cost, slow

...and why care?

...and finally, why is AI/ML so hard in healthcare?

Mistakes matter

- Consequences are not just annoying, but dangerous
- Mistakes by a human preferred to mistakes by computer

Being "right" isn't enough

...Need to be *transparent* and *justified*

Nobody likes to share

(and often can't, even if we wanted to)

Overview

- Some background & context
- Near-future *examples of ML/AI* that anesthesiologists might conceivably use
- ML/AI *logistical, social, and ethical* dilemmas & what to do about them

Overview

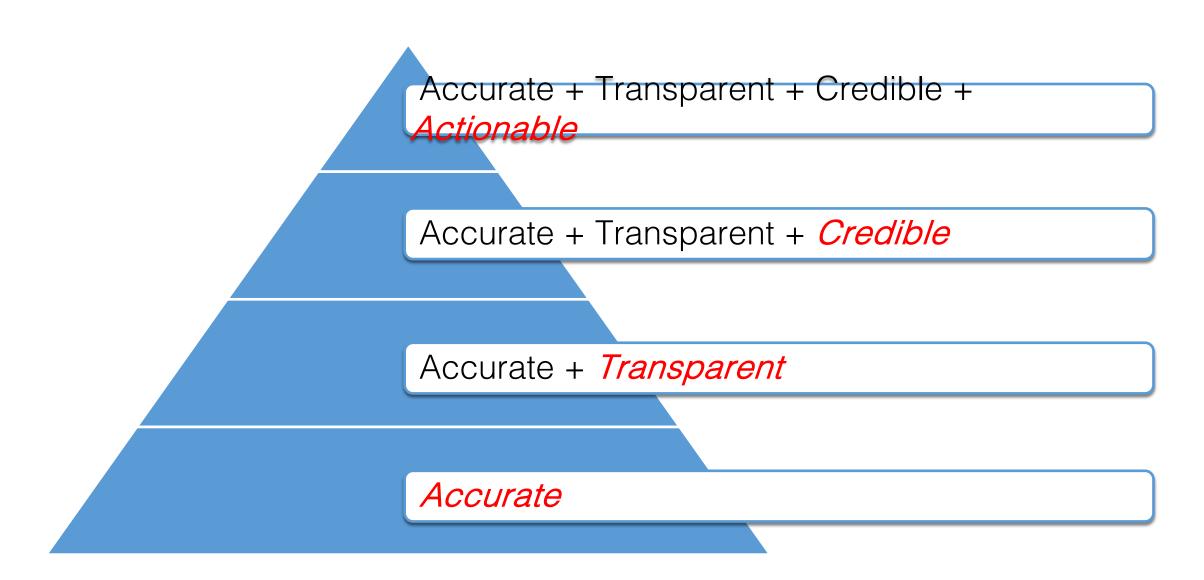
- Some background & context
- Near-future *examples of ML/AI* that anesthesiologists might conceivably use
- ML/AI *logistical, social, and ethical* dilemmas & what to do about them

ML/AI example: ICU Deterioration Prediction

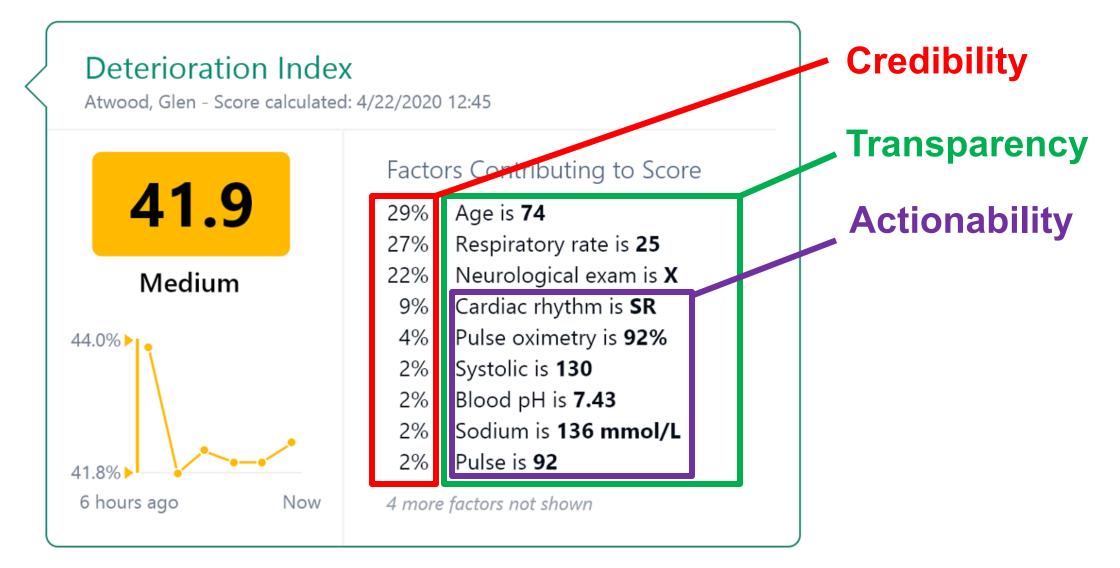
ANNALS OF THE AMERICAN THORACIC SOCIETY[®]

Validating a Widely Implemented Deterioration Index Model Among Hospitalized COVID-19 Patients

Singh K, Valley TS, Tang S, Li BY, Kamran F, Sjoding MW, Wiens J, Otles E, Donnelly JP, Wei MY, McBride JP, Cao J, Penoza C, Ayanian JZ, Nallamothu BK: Validating a Widely Implemented Deterioration Index Model Among Hospitalized COVID-19 Patients. AnnalsATS *In Press Dec 2020.*

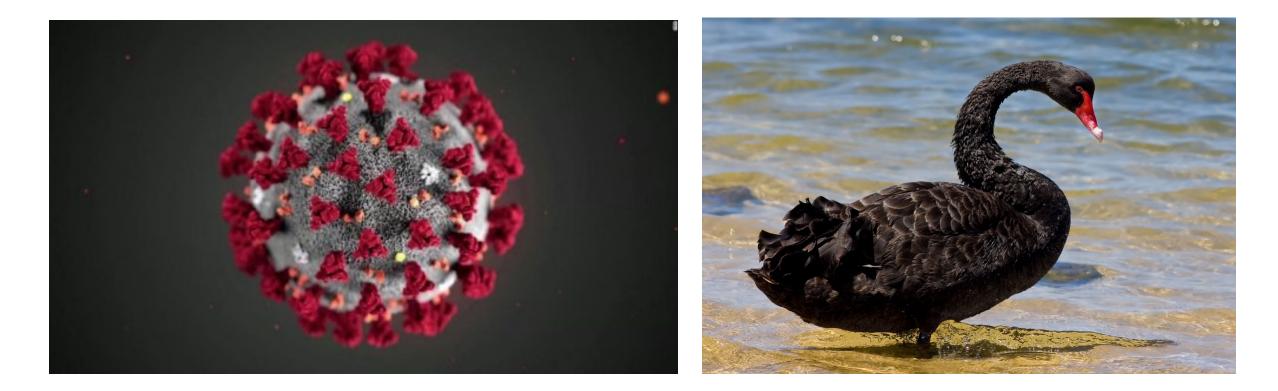

ML/AI example: ICU Deterioration Prediction

- Goal: Early detection of patient deterioration (ICU transfer, mechanical ventilation, or death)
- Cohort: UMich COVID-19 patients admitted to non-ICU
- Data Collected:
 - **Demographics** Age, gender, race
 - Vitals SBP, HR, RR, SpO₂
 - **RN assessments** GCS, ECG rhythm, O₂ requirement
 - Lab values CBC, chemistry, ABG


ML/AI example: ICU Deterioration Prediction

- Model Output: Score 0-100, representing likelihood of deterioration
- Algorithm performance:
 - AUC 0.76 (95% CI 0.68-0.84)
- ... so the model works *modestly* well, but:
 - How does it work?
 - Why should we trust (or not trust) it? (And in what situations?)
 - What should we do with the information?

Dilemma: Model Trust & Utility



Dilemma: Model Trust & Utility

Dilemma: Dataset Shift

Underperformance of a ML system due to **evolving mismatch** between training data and test data

Dilemma: Dataset Shift

Requires both vigilant frontline clinicians, and oversight from AI governance teams¹

 Finlayson SG, Subbaswamy A, Singh K, Bowers J, Kupke A, Zittrain J, Kohane IS, Saria S: The Clinician and Dataset Shift in Artificial Intelligence. N Engl J Med 2021; 385:283–61

prediction

ANESTHESIOLOGY

Supervised Machine-learning Predictive Analytics for Prediction of Postinduction Hypotension

Kendale S, Kulkarni P, Rosenberg AD, Wang J: Supervised Machine-learning Predictive Analytics for Prediction of Postinduction Hypotension. Anesthesiology 2018; 129:675–88

prediction

- Goal: Use data available *prior to induction* to predict likelihood of post-induction hypotension
- Dataset: NYU surgical patients >12 years old

- Demographics
- Comorbidities
- Home Meds

- ASA Status
- Intraoperative Meds
- Intraoperative Physiologic

prediction

- In a <u>test dataset</u>, the best prediction model yielded modest performance 10 minutes prior to induction: AUC: 0.74 (95% CI 0.72-0.77)
- ...so what do we do with this information?

 74yo ASA 4 male with carotid stenosis, severe COPD and Stage 3 CKD undergoing colectomy

ANESTHESIOLOGY

Supervised Machine-learning Predictive Analytics for Prediction of Postinduction Hypotension

ML Prediction algorithm

Post-induction Hypotension probability: *98%*

- 74yo ASA 4 male with carotid stenosis, severe COPD and Stage 3 CKD undergoing colectomy
- Post-induction Hypotension probability: *98%*

- 74yo ASA 4 male with carotid stenosis, severe COPD and Stage 3 CKD undergoing colectomy
- Post-induction Hypotension probability: *98%*

Action		Outcome: Pulm Complication	Outcome: AKI
Do Nothing	1%	10%	10%

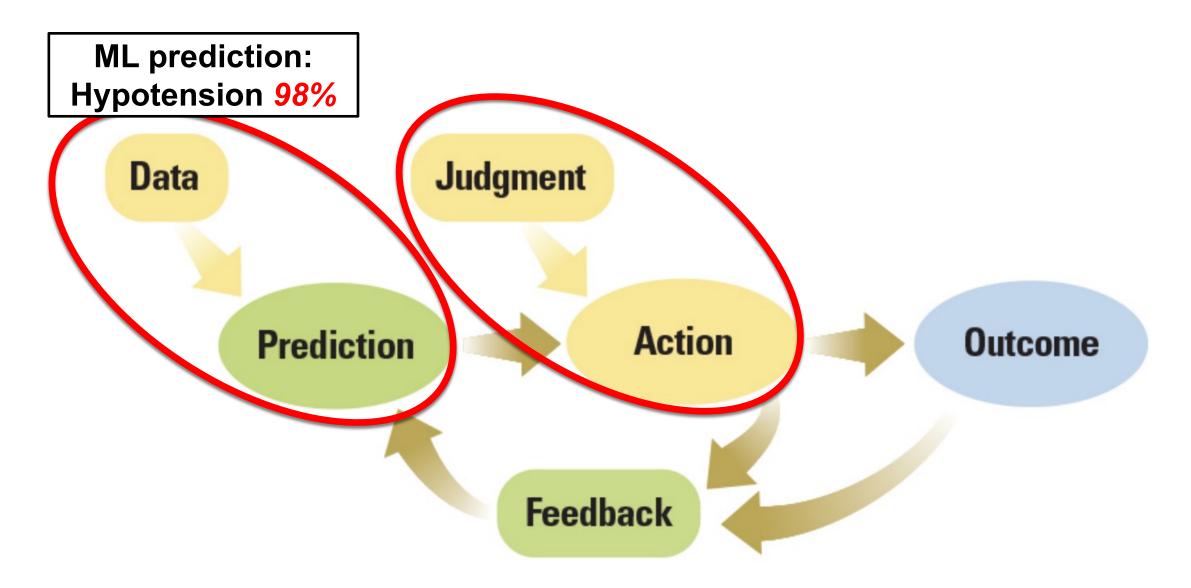
- 74yo ASA 4 male with carotid stenosis, severe COPD and Stage 3 CKD undergoing colectomy
- Post-induction Hypotension probability: *98%*

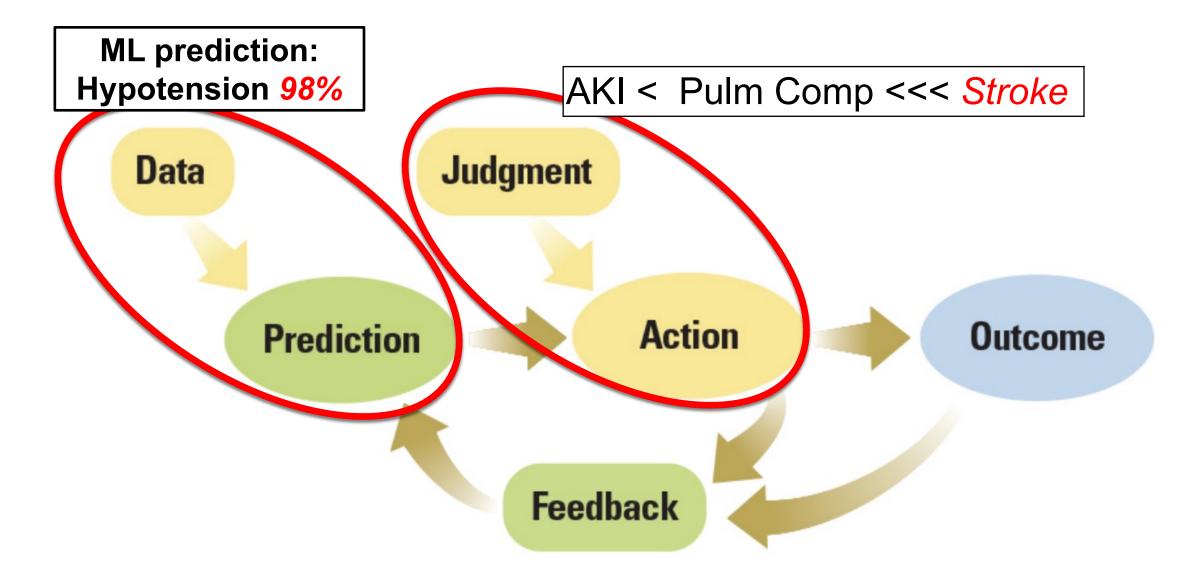
Action	Outcome: Stroke	Outcome: Pulm Complication	Outcome: AKI
Do Nothing	1%	10%	10%
Fluid Bolus	0.5%	20%	5%

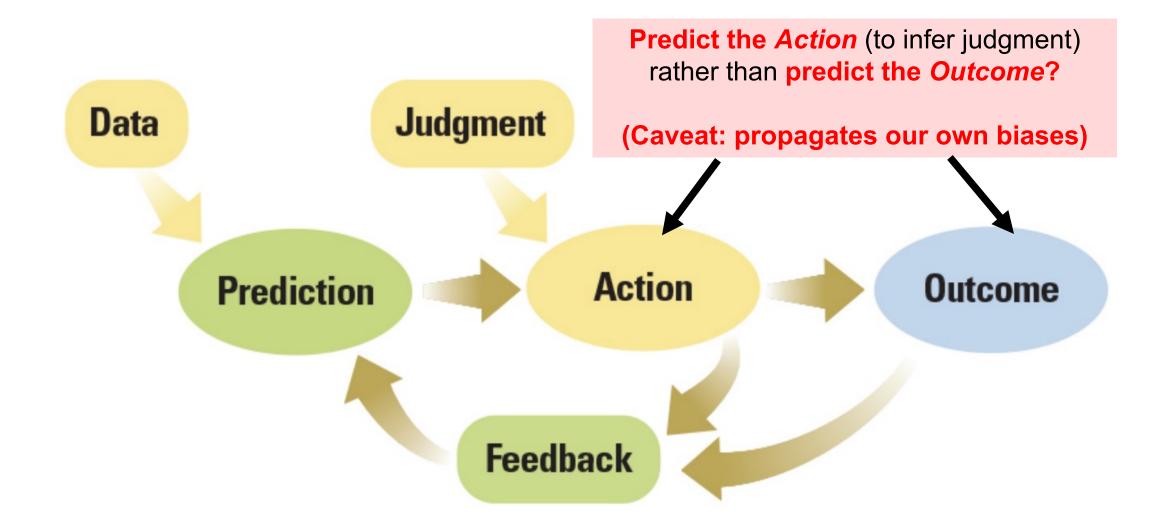
- 74yo ASA 4 male with carotid stenosis, severe COPD and Stage 3 CKD undergoing colectomy
- Post-induction Hypotension probability: *98%*

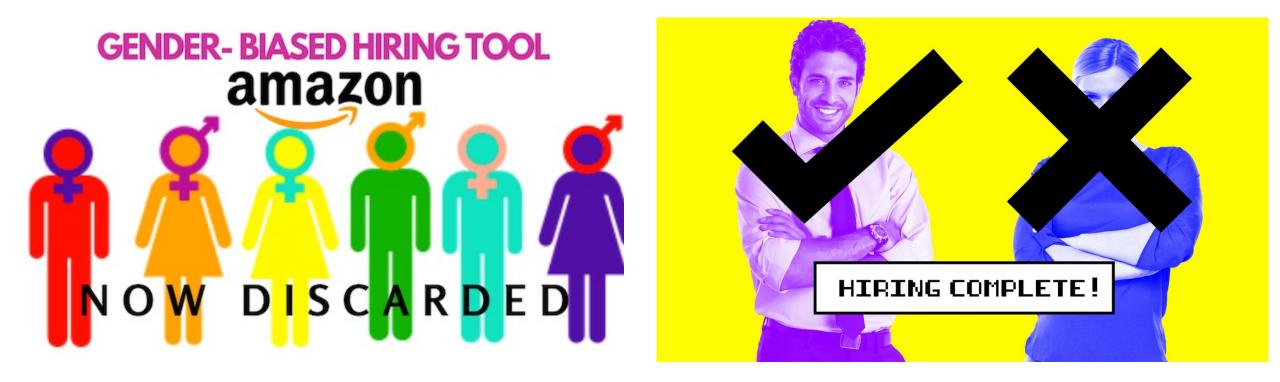
Action	Outcome: Stroke	Outcome: Pulm Complication	Outcome: AKI
Do Nothing	1%	10%	10%
Fluid Bolus	0.5%	20%	5%
Vasopressor	0.5%	10%	20%

Dilemma: Quantifying Clinical Judgment					
Judgment to be made what matters the most? and by how much more?					
Action	Outcome: Stroke	Outcome: Pulm Complication	Outcome: AKI		
Do Nothing	1%	10%	10%		
Fluid Bolus	0.5%	20%	5%		
Vasopressor	0.5%	10%	20%		


Judgments for Clinician Action = "Policy"


Action	Outcome: Stroke	Outcome: Pulm Complication	Outcome: AKI
Do Nothing	1%	10%	10%
Fluid Bolus	0.5%	20%	5%
Vasopressor	0.5%	10%	20%


	Burden of	Burden of	Burden of
	Stroke:	Pulm Comp:	AKI:
	100	2	1
	Judgments	s for Clinician Acti	on = "Policy"
Action	Outcome:	Outcome:	Outcome:
	Stroke	Pulm Complication	AKI
Do Nothing	1%	10%	10%
Fluid Bolus	0.5%	20%	5%
Vasopressor	0.5%	10%	20%


[

	Burden of Stroke:	Burden of Pulm Comp:	Burden of AKI:	
	100	2	1	
Α	W	ho decides this?	J >	b
Do Nothing	1% * 100	10% * 2	10% * <i>1</i>	1.30
Fluid Bolus	0.5% * 100	20% * 2	5% * 1	0.95
Vasopressor	0.5% * 100	10% * 2	20% * 1	0.90

Take-Home Points

 Machine learning for perioperative care is conceptually feasible

Take-Home Points

 Machine learning for perioperative care is conceptually feasible

 Next steps are to ensure ML algorithms are generalizable, safe, unbiased, and clinically actionable

What you can do today

- **Develop literacy** in AI/ML methods/interpretation
- Know the right problems for AI/ML to solve
- Understand the AI/ML model inputs
- Seek transparency and actionability
- Learn your biases ... (before a ML model does)

Thank you